Tuesday, January 21, 2020
Science :: essays research papers
Addition of Torques Objective: à à à à à To ascertain equilibrium of the meter stick. Doing so by finding missing variables consisting of torque, length, weight and mass. Record all results and compare to calculated results. Procedure: à à à à à (Lab part A) â⬠¢Ã à à à à A fiberglass meter stick is to be used. Suspend this meter stick using string. â⬠¢Ã à à à à Hang 100 gram weight from the meter stick with a string a the 10 cm point on the meter stick. â⬠¢Ã à à à à Move the loop that suspends the meter stick left or right horizontally until the meter stick balances. (with the 100 g weight still attached at the 10 cm point) Procedure: à à à à à (Lab part B) â⬠¢Ã à à à à Place a string at 65 cm to support the meter stick. â⬠¢Ã à à à à Find the torque produced by the off centered string support by hanging weights on the shorter end of the meter stick to make it balance. â⬠¢Ã à à à à Take found torque and calculate mass to be placed at the 15 cm mark in order to balance the meter stick. â⬠¢Ã à à à à Hang weights to meter stick at the 15 cm location until the meter stick acquires equilibrium to prove your calculations. Procedure: à à à à à (Lab part C) â⬠¢Ã à à à à Suspend a meter stick with string placed at the 65 cm point. â⬠¢Ã à à à à Hang 100 grams of weight at the 45 cm mark, and 500 grams at the 90 cm mark on the meter stick. â⬠¢Ã à à à à Hang 200 grams of weight between 0 ââ¬â 45 cm mark and move this weight until equilibrium is achieved. Record this measurement. Data Part A: à à à à à à à à à à Mass of weight (m-2) = 100 grams Position string balanced = 36.4 cm Distance from center of meter stick to balance point. (L-1) = 13.6 cm Distance from balance point to suspended weight. (L-2) = 26.4 cm Mass of meter stick. (at center gravity) m1 = m2 (L1/ L2) Therefore: m1 = 100 (26.4/13.6) m1 = 100(1.94111) m1 = 194.1176 grams (mass of the meter stick) Data Part B: à à à à à à à à à à Found natural torque (off set support string) = t = fl 85 grams placed at 100 cm balanced the off set support string at 65 cm. Therefore: t = 85 * (100 ââ¬â 65) t = 2975 Total torque of right side of support string: t = 90cm ââ¬â 65cm (500 g) t = 12,500 Then we calculated the left side torque: t = 65cm ââ¬â 40cm (100g) t = 2500 à à à à à Then we took the right torque and subtracted the left torque: 9525 ââ¬â 2500 = 7025 (this is the missing force on the left side) Missing torque 7025 = 50cm ( ? ) 7025/50 = 140.5grams Calculate weight to be placed at 15cm. = 140.5 grams Data Part C:
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.